家校自习室高中高二内容页

高二下学期数学知识点

2024-04-25 15:30:05高二213

高二本身的知识体系而言,它主要是对高一知识的深入和新知识模块的补充。以数学为例,除去不同学校教学进度的不同,我们会在高二接触到更为深入的函数,也将开始学习从未接触过的复数、圆锥曲线等题型。下面小编为大家带来高二下学期数学知识点,希望对您有所帮助!

高二下学期数学知识点

高二下学期数学知识点

集合的分类:

(1)按元素属性分类,如点集,数集。

(2)按元素的个数多少,分为有/无限集

关于集合的概念:

(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。

(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。

集合可以根据它含有的元素的个数分为两类:

含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

非负整数全体构成的集合,叫做自然数集,记作N;

在自然数集内排除0的集合叫做正整数集,记作N+或N_;

整数全体构成的集合,叫做整数集,记作Z;

有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)

实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的'点一一对应的数。)

1.列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.

有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。

例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}.

无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}.

2.描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。

例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”

而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为

{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。

一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}

它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。

例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

高二年级下学期数学知识点

数列定义:

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列的通项公式为:an=a1+(n-1)d(1)

前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

以上n均属于正整数。

解释说明:

从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。

且任意两项am,an的关系为:an=am+(n-m)d

它可以看作等差数列广义的通项公式。

推论_式:

从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。

基本公式:

和=(首项+末项)×项数÷2

项数=(末项-首项)÷公差+1

首项=2和÷项数-末项

末项=2和÷项数-首项

末项=首项+(项数-1)×公差

高二数学下册的知识点

复合函数定义域

若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B}综合考虑各部分的x的取值范围,取他们的交集。

求函数的定义域主要应考虑以下几点:

⑴当为整式或奇次根式时,R的值域;

⑵当为偶次根式时,被开方数不小于0(即≥0);

⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;

⑷当为指数式时,对零指数幂或负整数指数幂,底不为0。

⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。

⑹分段函数的定义域是各段上自变量的取值集合的并集。

⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求

⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。

⑼对数函数的真数必须大于零,底数大于零且不等于1。

⑽三角函数中的切割函数要注意对角变量的限制。

复合函数常见题型

(ⅰ)已知f(x)定义域为A,求f[g(x)]的定义域:实质是已知g(x)的范围为A,以此求出x的范围。

(ⅱ)已知f[g(x)]定义域为B,求f(x)的定义域:实质是已知x的范围为B,以此求出g(x)的范围。

(ⅲ)已知f[g(x)]定义域为C,求f[h(x)]的定义域:实质是已知x的范围为C,以此先求出g(x)的范围(即f(x)的定义域);然后将其作为h(x)的范围,以此再求出x的范围。


高二下学期数学知识点相关文章:

★ 2022高二上学期数学重要知识点总结

★ 高二上学期数学知识点总结

★ 人教版高二数学上册必修知识点

★ 高二数学必修2圆的参数方程知识点

★ 高二物理下半学期知识点总结归纳

★ 高二数学上学期必记的重要知识点分析

★ 高二数学上学期知识点总结归纳

点击展开,剩余50%未阅读
再来一篇
上一篇:高二数学下学期重要知识点 下一篇:高二数学考试解题四项注意
猜你喜欢